7,415 research outputs found

    Cytochrome P450 CYP1B1 interacts with 8-<i>methoxypsoralen</i> (8-MOP) and influences psoralen-Ultraviolet A (PUVA) sensitivity

    Get PDF
    Background: There are unpredictable inter-individual differences in sensitivity to psoralen-UVA (PUVA) photochemotherapy, used to treat skin diseases including psoriasis. Psoralens are metabolised by cytochrome P450 enzymes (P450), and we hypothesised that variability in cutaneous P450 expression may influence PUVA sensitivity. We previously showed that P450 CYP1B1 was abundantly expressed in human skin and regulated by PUVA, and described marked inter-individual differences in cutaneous CYP1B1 expression.Objectives: We investigated whether CYP1B1 made a significant contribution to 8-methoxypsoralen (8-MOP) metabolism, and whether individuality in CYP1B1 activity influenced PUVA sensitivity.Methods: We used E. coli membranes co-expressing various P450s and cytochrome P450 reductase (CPR) to study 8-MOP metabolism and cytotoxicity assays in CYP1B1-expressing mammalian cells to assess PUVA sensitivity.Results: We showed that P450s CYP1A1, CYP1A2, CYP1B1, CYP2A6 and CYP2E1 influence 8-MOP metabolism. As CYP1B1 is the most abundant P450 in human skin, we further demonstrated that: (i) CYP1B1 interacts with 8-MOP (ii) metabolism of the CYP1B1 substrates 7-ethoxyresorufin and 17-b-estradiol showed concentration-dependent inhibition by 8-MOP and (iii) inhibition of 7-ethoxyresorufin metabolism by 8-MOP was influenced by CYP1B1 genotype. The influence of CYP1B1 on PUVA cytotoxicity was further investigated in a Chinese hamster ovary cell line, stably expressing CYP1B1 and CPR, which was more sensitive to PUVA than control cells, suggesting that CYP1B1 metabolises 8-MOP to a more phototoxicmetabolite(s).Conclusion: Our data therefore suggest that CYP1B1 significantly contributes to cutaneous 8-MOP metabolism, and that individuality in CYP1B1 expression may influence PUVA sensitivity

    HDAC inhibitors increase NRF2-signaling in tumour cells and blunt the efficacy of co-adminstered cytotoxic agents

    Get PDF
    The NRF2 signalling cascade provides a primary response against electrophilic chemicals and oxidative stress. The activation of NRF2-signaling is anticipated to have adverse clinical consequences; NRF2 is activated in a number of cancers and, additionally, its pharmacological activation by one compound can reduce the toxicity or efficiency of a second agent administered concomitantly. In this work, we have analysed systematically the ability of 152 research, pre-clinical or clinically used drugs to induce an NRF2 response using the MCF7-AREc32 NRF2 reporter. Ten percent of the tested drugs induced an NRF2 response. The NRF2 activators were not restricted to classical cytotoxic alkylating agents but also included a number of emerging anticancer drugs, including an IGF1-R inhibitor (NVP-AEW541), a PIM-1 kinase inhibitor (Pim1 inhibitor 2), a PLK1 inhibitor (BI 2536) and most strikingly seven of nine tested HDAC inhibitors. These findings were further confirmed by demonstrating NRF2-dependent induction of endogenous AKR genes, biomarkers of NRF2 activity. The ability of HDAC inhibitors to stimulate NRF2-signalling did not diminish their own potency as antitumour agents. However, when used to pre-treat cells, they did reduce the efficacy of acrolein. Taken together, our data suggest that the ability of drugs to stimulate NRF2 activity is common and should be investigated as part of the drug-development process

    A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response

    Get PDF
    The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are closely related orphan nuclear hormone receptors that play a critical role as xenobiotic sensors in mammals. Both receptors regulate the expression of genes involved in the biotransformation of chemicals in a ligand-dependent manner. As the ligand specificity of PXR and CAR have diverged between species, the prediction of in vivo PXR and CAR interactions with a drug are difficult to extrapolate from animals to humans. We report the development of what we believe are novel PXR- and CAR-humanized mice, generated using a knockin strategy, and Pxr- and Car-KO mice as well as a panel of mice including all possible combinations of these genetic alterations. The expression of human CAR and PXR was in the predicted tissues at physiological levels, and splice variants of both human receptors were expressed. The panel of mice will allow the dissection of the crosstalk between PXR and CAR in the response to different drugs. To demonstrate the utility of this panel of mice, we used the mice to show that the in vivo induction of Cyp3a11 and Cyp2b10 by phenobarbital was only mediated by CAR, although this compound is described as a PXR and CAR activator in vitro. This panel of mouse models is a useful tool to evaluate the roles of CAR and PXR in drug bioavailability, toxicity, and efficacy in humans

    Improving the predictive power of xenograft and syngeneic anti-tumour studies using mice humanised for pathways of drug metabolism

    Get PDF
    Drug development is an expensive and time-consuming process, with only a small fraction of drugs gaining regulatory approval from the often many thousands of candidates identified during target validation. Once a lead compound has been identified and optimised, they are subject to intensive pre-clinical research to determine their pharmacodynamic, pharmacokinetic and toxicological properties, procedures which inevitably involve significant numbers of animals - mainly mice and rats, but also dogs and monkeys in much smaller numbers and for specific types of drug candidates. Many compounds that emerge from this process, having been shown to be safe and efficacious in pre-clinical studies, subsequently fail to replicate this outcome in clinical trials, therefore wasting time, money and, most importantly, animals. Due to high rates of metabolism and a differing spectrum of metabolites (some pharmacologically active) in rodents, species differences in drug metabolism can be a major impediment to drug discovery programmes and confound the extrapolation of animal data to humans. To circumvent this, we have developed a complex transgenic mouse model – 8HUM - which faithfully replicates human Phase I drug metabolism (and its regulation), and which will generate more human-relevant data from fewer animals in a pre-clinical setting and reduce attrition in the clinic. One key area for the pre-clinical application of animals in an oncology setting – almost exclusively mice - is their use in anti-tumour studies. We now further demonstrate the utility of the 8HUM mouse using a murine melanoma cell line as a syngeneic tumour and also present an immunodeficient version 8HUM_Rag2 -/- - for use in xenograft studies. These models will be of significant benefit not only to Pharma for pre-clinical drug development work, but also throughout the drug efficacy, toxicology, pharmacology, and drug metabolism communities, where fewer animals will be needed to generate more human-relevant data

    Through a glass, darkly? HepaRG and HepG2 cells as models of human Phase I drug metabolism

    Get PDF
    The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity and utility in P450 induction studies. Our analysis indicates that HepG2s are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to draw conclusions regarding their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line’s functionality in terms of known mechanisms of P450 regulation must be demonstrated. We therefore support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data

    Potential of in vivo stress reporter models to reduce animal use and provide mechanistic insights in toxicity studies

    Get PDF
    Chemical risk assessment ensures protection from the toxic effects of drugs and manmade chemicals. To comply with regulatory guidance, studies in complex organisms are required, as well as mechanistic studies to establish the relevance of any toxicities observed to man. Although in vitro toxicity models are improving, in vivo studies remain central to this process. Such studies are invariably time-consuming and often involve large numbers of animals. New regulatory frameworks recommend the implementation of “smart” in vivo approaches to toxicity testing that can effectively assess safety for humans and comply with societal expectations for reduction in animal use. A major obstacle in reducing the animals required is the time-consuming and complexity of the pathological endpoints used as markers of toxicity. Such endpoints are prone to inter-animal variability, subjectivity and require harmonisation between testing sites. As a consequence, large numbers of animals per experimental group are required. To address this issue, we propose the implementation of sophisticated stress response reporter mice that we have developed. These reporter models provide early biomarkers of toxic potential in a highly reproducible manner at single-cell resolution, which can also be measured non-invasively and have been extensively validated in academic research as early biomarkers of stress responses for a wide range of chemicals at human-relevant exposures. In this report, we describe a new and previously generated models in our lab, provide the methodology required for their use and discuss how they have been used to inform on toxic risk. We propose our in vivo approach is more informative (refinement) and reduces the animal use (reduction) compared to traditional toxicity testing. These models could be incorporated into tiered toxicity testing and used in combination with in vitro assays to generate quantitative adverse outcome pathways and inform on toxic potential

    Application of Mice Humanised for Cytochrome P450 CYP2D6 to the Study of Tamoxifen Metabolism and Drug-Drug Interaction with Antidepressants

    Get PDF
    Tamoxifen is an estrogen receptor antagonist used in the treatment of breast cancer. It is a prodrug that is converted by several cytochrome P450 enzymes to a primary metabolite, N-desmethyltamoxifen (NDT), which is then further modified by CYP2D6 to a pharmacologically potent secondary metabolite, 4-hydroxy-N-desmethyltamoxifen (endoxifen). Antidepressants (ADs), which are often coprescribed to patients receiving tamoxifen, are also metabolized by CYP2D6 and evidence suggests that a drug–drug interaction between these agents adversely affects the outcome of tamoxifen therapy by inhibiting endoxifen formation. We evaluated this potentially important drug–drug interaction in vivo in mice humanized for CYP2D6 (hCYP2D6). The rate of conversion of NDT to endoxifen by hCYP2D6 mouse liver microsomes (MLMs) in vitro was similar to that of the most active members of a panel of 13 individual human liver microsomes. Coincubation with quinidine, a CYP2D6 inhibitor, ablated endoxifen generation by hCYP2D6 MLMs. The NDT-hydroxylation activity of wild-type MLMs was 7.4 times higher than that of hCYP2D6, whereas MLMs from Cyp2d knockout animals were inactive. Hydroxylation of NDT correlated with that of bufuralol, a CYP2D6 probe substrate, in the human liver microsome panel. In vitro, ADs of the selective serotonin reuptake inhibitor class were, by an order of magnitude, more potent inhibitors of NDT hydroxylation by hCYP2D6 MLMs than were compounds of the tricyclic class. At a clinically relevant dose, paroxetine pretreatment inhibited the generation of endoxifen from NDT in hCYP2D6 mice in vivo. These data demonstrate the potential of ADs to affect endoxifen generation and, thereby, the outcome of tamoxifen therapy
    corecore